

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO PROGRAMA DE MAESTRIA Y DOCTORADO EN CIENCIAS QUIMICAS

Programa de actividad académica

Nombre de la asignatura: Química Cuántica							
Clave: No llenar este campo	Semestre:	Campo de conocimiento: Química No. Créditos:					
Carácter: Optativa de elección			Horas por semana		Total horas/ semana	Total horas/ semestre	
Tipo: Teórico			Teoría: X	Práctica:	3	48	
Modalidad: curso			Duración del programa: 16 semanas				

Actividad académica con seriación antecedente:

Objetivo general: El alumno revisará los conceptos básicos introductorios de la química cuántica. Así como el método de aproximación de referencia simple, es decir, empleando métodos basados en un determinante de Slater y la combinación lineal de orbitales atómicos, para resolver el problema de interacción de electrones.

Objetivos específicos: Comprender los métodos de aproximación de partícula independiente sujeta a un potencial de interacción efectivo y la solución del problema de potencial auto convergente. Modelado de sistemas sencillos con códigos de estructura electrónica.

Índice temático						
Unidad	Tema	Horas				
Unidad	i ema	Teóricas	Prácticas			
1	Fundamentos de la mecánica cuántica. Presentación de los postulados y problemas sencillos	6				
2	Átomo de Hidrógeno, Solución de la ecuación de Schrödinger, Orbitales	6				
3	Métodos Variacionales	6				
4	Métodos Perturbativos	6				
5	Combinación Combinación lineal de ortitales gaussianos y la aproximación de Hartree-Fock	6				
6	Introducción a programación en Python y empleo del paquete computacional PSI4numpy	12	12			
Total de horas teóricas:			36			
Total de horas prácticas:			12			
Suma total de horas:			48			

Bibliografía básica actualizada:

Pilar F.L, Elementary Quantum Chemistry, Seco nd Edition Dover Publications, 2011 Atkins, P. W.; Friedman, R. S., Molecular Quantum Mechanics, 5a. E d, Oxford University press, 2010

Szabo, A.; Ostlund, N.S., Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory, Dover Books, 1996						
Parr, R.G.; Yang, W., Density-Functional Theory of Atoms and Molecules, Oxford University press, 1989						
Sugerencias didácticas:	Mecanismos de evaluación del aprendizaje de los alumnos:					
Exposición oral () Exposición audiovisual (X) Ejercicios dentro de clase (X) Ejercicios fuera del aula (X) Seminarios () Lecturas obligatorias () Trabajo de investigación (X) Prácticas de taller o laboratorio () Prácticas de campo () Otras: (X)	Exámenes parciales (X) Examen final escrito (X) Trabajos y tareas fuera del aula () Exposición de seminarios por los alumnos () Participación en clase () Asistencia () Seminario () Otras: (X) Empleo de la paquetería Psi4numpy para reforzar aprendizaje, implementación la solución auto consistente de Hartree-Fock y aplicación de la Química Computacional al estudio de problemas modelo					