

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO PROGRAMA DE MAESTRÍA Y DOCTORADO EN CIENCIAS QUÍMICAS MAESTRÍA EN CIENCIAS QUÍMICAS Programa de actividad académica

Denominación: Ma	atemáticas c	le la Fisicoquím	nica II				
Clave:	Semestre:	Campo de conoc	Campo de conocimiento: Química No. Créditos: 3				
Carácter: Obligatori	a de elección	•	Horas po	or semana	Total horas/ semana		Total horas/ semestre
The same Tarfolds			Teoría:	Práctica:			
Tipo: Teórico			3	0	3		24
Modalidad: CURSO			Duración	del programa	a: Medio s	emes	stre

Seriación: No (x) Si () Obligatoria () Indicativa ()
Actividad académica antecedente: Ninguna
Actividad académica subsecuente: Ninguna
Objetivo general:
El alumno se familiarizará con los métodos matemáticos más comunes requeridos para hacer investigación en las
distintas áreas de Fisicoquímica Teórica.
Objetivos específicos:

Índice te	mático	Horas	
Unidad	Tema	Teóricas	Prácticas
1	ELEMENTOS DE ANALISIS VECTORIAL	4	
2	TEORIA DE STURM LIOUVILLE Y FUNCIONES ESPECIALES	10	
3	SERIES DE FOURIER Y TRANSFORMADAS INTEGRALES	10	
Total de horas teóricas:		24	
Total de	horas prácticas:		
Suma to	tal de horas:	24	

	ELEMENTOS DE ANALISIS VECTORIAL
	ELEMENTOS DE ANALISIS VECTORIAL
1	1.1 Gradiente, divergencia, rotacional y su significado geométrico.
	1.2 Teoremas de Green, Gauss y Stokes
	TEORIA DE STURM LIOUVILLE Y FUNCIONES ESPECIALES
	2.1 Introducción
	2.2 Operadores Hermitianos
2	2.3 Problemas de Eigenvalores de Ecuaciones Diferenciales Ordinarias
	2.4 Método Variacional
	2.5 Ecuación de Bessel. Funciones de Bessel de primera y segunda clase.
	2.6 Ecuación de Legendre. Polinomios de Legendre
	SERIES DE FOURIER Y TRANSFORMADAS INTEGRALES
	3.1 Propiedades Generales de Series de Fourier
	3.2 Aplicaciones de Series de Fourier
	3.3 Fenómeno de Gibbs
	3.4 Introducción a las Transformadas Integrales
	3.5 Transformada de Fourier
	3.6 Propiedades de las transformadas de Fourier
3	3.7 Teorema de Convolución de Fourier
	3.8 Aplicaciones al Procesamiento de Señales.
	3.9 Transformada de Fourier Discreta
	3.10 Transformada de Laplace
	3.11 Propiedades de las Transformadas de Laplace
	3.12 Teorema de Convolución de Laplace
	3.13 Transformada de Laplace Inversa

Bibliografía básica:

1. Mathematical Methods for Physicists. Arfken, Weber, and Harris. Academic Press 2012, 7th Edition.

Bibliografía complementaria:

- 1. Modern Mathematical Methods for Physicists and Engineers. Cantrell. Cambridge University Press 2000, 1st edition.
- 2. Mathematical Methods for Physics and Engineering. Riley, Hobson and Bence. Cambridge University Press 2000, 1st edition.
- 3. Mathematical Physics: A modern introduction to its foundations. Hassani. Springer-Verlag 1999. 1st edition.

Sugerencias didácticas: Mecanismos de evaluación del aprendizaje			e de los
Exposición oral	(X)	alumnos:	
Exposición audiovisual	()	Exámenes parciales	(X)
Ejercicios dentro de clase	(X)	Examen final escrito	()
Ejercicios fuera del aula	(X)	Trabajos y tareas fuera del aula	()
Seminarios	()	Exposición de seminarios por los alumnos	(X)
Lecturas obligatorias	(X)	Participación en clase	(X)
Trabajo de investigación	(X)	Asistencia	()
Prácticas de taller o laboratorio	()	Seminario	()
Prácticas de campo	()	Otras:	()
Otras:	()		, ,

Línea de investigación:

Perfil profesiográfico: Doctor o Maestro en Ciencias, contar con experiencia en el campo de conocimiento de la química o la física y experiencia docente.