

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO PROGRAMA DE MAESTRÍA Y DOCTORADO EN CIENCIAS QUÍMICAS MAESTRÍA EN CIENCIAS QUÍMICAS

Programa de actividad académica

Denominación : Introducción a la espectroscopía fotoelectrónica de rayos X							
Clave:	Semestre: 1 - 4	Campo de conocimiento: Química No. Créditos: 6					
Carácter: Optativa			Horas por semana		Total horas/ semana	Total horas/ semestre	
The Table			Teoría:	Práctica:			
Tipo: Teórico			3	0	3		48
Modalidad: curso			Duración del programa: Un semestre				

Seriación: No (x) Si () Obligatoria () Indicativa ()

Actividad académica antecedente: Ninguna Actividad académica subsecuente: Ninguna

Objetivo general:

Que los alumnos sean capaces de interpretar y procesar espectros fotoelectrónicos de rayos X para obtener información cualitativa y cuantitativa acerca de la composición química de la superficie de un material

Objetivos específicos:

Al concluir el curso, los alumnos serán capaces de

- a) Entender el fundamento físico que rige la espectroscopía fotoelectrónica de rayos X
- b) Obtener información cualitativa acerca de la composición elemental y el ambiente químico de la superficie de un material
- c) Procesar información de un análisis de una superficie a través de espectroscopía fotoelectrónica de rayos X para cuantificar los elementos presentes en la muestra
- d) Proponer un método de análisis adecuado para la caracterización de un material de acuerdo con el objetivo de análisis

Índice temático				
Unidad	Tema	Horas		
	Tema	Teóricas	Prácticas	
1	Interacción de los rayos X con la materia	6	0	
2	Principios básicos de la espectroscopía fotoelectrónica de rayos X	15	0	
3	Fundamentos de análisis cualitativo en espectroscopía fotoelectrónica de rayos X	15	0	
4	Fundamentos de análisis cuantitativo en espectroscopía fotoelectrónica de rayos X	12	0	
	Total de horas teóricas:		48	
Total de horas prácticas:		0		
Suma total de horas:		48		

	Contenido Temático				
Unidad	Tema y subtemas				
1	Interacción de los rayos X con la materia 1.1. El espectro electromagnético 1.2. Interacciones elásticas 1.3. Interacciones inelásticas				
2	Principios básicos de la espectroscopía fotoelectrónica de rayos X				

	2.1. El efecto fotoeléctrico
	2.2. Volumen de interacción y por qué es una técnica de superficie
	2.3. Transiciones electrónicas
	2.4. Energía de enlace y desplazamiento químico
	2.5. Acoplamiento espín-órbita
	2.6. Instrumentación
	Fundamentos de análisis cualitativo en espectroscopía fotoelectrónica de rayos X
	3.1. Desplazamiento químico debido al ambiente electrónico
	3.2. Desdoblamiento de las señales
3	3.3. Efectos de carga
	3.4. Satélites y plasmones
	3.5. Deconvolución y ajuste de señales
	Fundamentos de análisis cuantitativo en espectroscopía fotoelectrónica de rayos X
4	4.1. Cuantificación basada en las intensidades de las señales
	4.2. Ateuación de señales
	4.3. Efectos de matriz
	4.4. Efectos de la rugosidad

Bibliografía básica actualizada:

- 1. Paul van der Heide, X-Ray Photoelectron Spectroscopy: An Introduction to Principles and Practices, John Wiley & Sons, USA, 2012
- 2. Siegfried Hofmann, Auger- and X-Ray Photoelectron Spectroscopy in Materials Science: A User-Oriented Guide, Springer, USA, 2013
- 3. Stefan Hüfner, Photoelectron Spectroscopy: Principles and Applications, 3rd edition, Springer, USA, 2003

Bibliografía complementaria:

- 1. Bradley D. Fahlman, Materials Chemistry, 2nd edition, Springer, USA, 2011
- 2. John F. Moulder, William F. Stickle, Peter E. Sobol, and Kenneth D. Bomben, Handbook of X-Ray Photoelectron Spectroscopy, Perkin Elmer Corporation, USA, 1992
- 3. Alexander V. Naumkin, Anna Kraut-Vass, Stephen W. Gaarenstroom, and Cedric J. Powell, NIST X-Ray Photoelectron Spectroscopy Database, version 5.0, NIST, USA, 2023 (https://dx.doi.org/10.18434/T4T88K)

ugerencias didácticas: Mecanismos de evaluación del aprendizaje de		e de los	
Exposición oral	(X)	alumnos:	
Exposición audiovisual	(X)	Exámenes parciales	(X)
Ejercicios dentro de clase	(X)	Examen final escrito	(X)
Ejercicios fuera del aula	(X)	Trabajos y tareas fuera del aula	(X)
Seminarios	(X)	Exposición de seminarios por los alumnos	(X)
Lecturas obligatorias	(X)	Participación en clase	(X)
Trabajo de investigación	()	Asistencia	(X)
Prácticas de taller o laboratorio	()	Seminario	(X)
Prácticas de campo	()	Otras:	()
Otras:	()		,

Línea de investigación:

Perfil profesiográfico: Maestro o Doctor en Ciencias, con experiencia en el campo de conocimiento de la química y experiencia docente.