

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO PROGRAMA DE MAESTRIA Y DOCTORADO EN CIENCIAS QUIMICAS

Programa de actividad académica

Nombre de la asignatura: Diseño de Fármacos Asistido por Computadora							
Clave:	Semestre:	Campo de conoci	Campo de conocimiento: Química No. Créditos: 6				
Carácter: Optativa de elección			Horas por semana		Total horas/ semana		.
T'			Teoría:	Práctica:			
Tipo: Curso			1	2	3	48	
Modalidad: Teórica-práctica			Duración del programa: 16 semanas				

Actividad académica con seriación antecedente: No aplica.

Objetivo general:

1. Conocer los fundamentos y utilizar las técnicas del diseño de fármacos asistido por computadora.

Objetivos específicos:

- 1. Analizar y discutir el potencial del modelado molecular en el ámbito del diseño de fármacos.
- 2. Familiarizarse con el uso de diversos programas, servidores y sitios web de diseño molecular.
- 3. Discutir los retos y desafíos que enfrenta el diseño de fármacos asistido por computadora.

Índice temático

Unidad	Tema	Но	Horas		
	Tema	Teóricas	Prácticas		
1	 Introducción al Diseño de Fármacos Asistido por Computadora Historia y evolución del diseño de fármacos Importancia y aplicaciones actuales Ventajas y limitaciones del diseño de fármacos 	2	4		
2	 Interacciones Intermoleculares No-Covalentes Tipos de interacciones intermoleculares (enlaces de hidrógeno, interacciones de apilamiento, puentes salinos, interacciones hidrofóbicas) Relevancia de las interacciones no-covalentes en la unión fármaco-receptor Métodos para el estudio de interacciones no-covalentes Casos de estudio 	2	4		
3	 Modelo de Farmacóforo Definición y conceptos básicos Modelo de farmacóforo basado en el ligando Modelo de farmacóforo basado en el receptor Modelo de farmacóforo híbrido Aplicaciones en la identificación de nuevos ligandos 	2	4		

4	 4. Acoplamientos moleculares in silico 4.1 Algoritmos de búsqueda 4.2 Funciones de evaluación 4.3 Preparación del ligando 4.4 Validación de un protocolo de acoplamiento 4.5 Análisis de resultados de acoplamiento 	2	4
5	 Simulaciones de Dinámica Molecular Conceptos básicos y fundamentos teóricos Preparación de sistemas para simulaciones Análisis e interpretación de resultados Aplicaciones en el estudio de estabilidad y conformación de complejos fármaco-receptor 	2	4
6	 6. Propiedades ADME 6.1 Definición y significado de ADME (Absorción, Distribución, Metabolismo y Excreción) 6.2 Predicción <i>in silico</i> de propiedades ADME 6.3 Relevancia en el diseño y desarrollo de fármacos 	2	4
7	 7. Cribado Virtual 7.1 Principios y metodología del cribado virtual 7.2 Casos de estudio 7.3 Generación de un flujo de trabajo 	2	4
8	 Integración de Técnicas y Proyectos Libres Integración de técnicas de diseño de fármacos (farmacóforo, acoplamiento, dinámica molecular, ADME) Metodologías para el diseño de proyectos de investigación en fármacos Desarrollo de proyectos libres: elección de problemas, diseño de experimentos in silico, análisis de datos Presentación y discusión de proyectos: comunicación científica y presentación de resultados Evaluación y retroalimentación de proyectos 	2	4
	Total de horas teóricas:	1	6
	Total de horas prácticas:	32	
	Suma total de horas:	4	8

Bibliografía básica actualizada:

- da Silva Rocha, S. F., Olanda, C. G., Fokoue, H. H., & Sant'Anna, C. M. (2019). Virtual screening techniques in drug discovery: review and recent applications. Current topics in medicinal chemistry, 19(19), 1751-1767. https://doi.org/10.3390/ijms20061375
- Schaller, D., Šribar, D., Noonan, T., Deng, L., Nguyen, T. N., Pach, S., & Wolber, G. (2020). Next generation 3D pharmacophore modeling. Wiley Interdisciplinary Reviews: Computational Molecular Science, 10(4), e1468. https://doi.org/10.1002/wcms.1468
- Stanzione, F., Giangreco, I., & Cole, J. C. (2021). Use of molecular docking computational tools in drug discovery. Progress in Medicinal Chemistry, 60, 273-343. https://doi.org/10.1016/bs.pmch.2021.01.004

Bibliografía complementaria:

- Zhou, P., Huang, J., & Tian, F. (2012). Specific noncovalent interactions at protein-ligand interface: implications for rational drug design. Current medicinal chemistry, 19(2), 226-238. https://doi.org/10.2174/092986712803414150
- de Freitas, R. F., & Schapira, M. (2017). A systematic analysis of atomic protein-ligand interactions in the PDB. Medchemcomm, 8(10), 1970-1981. https://doi.org/10.1039/C7MD00381A
- Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific reports, 7(1), 42717. https://doi.org/10.1038/srep42717

 Sunseri, J., & Koes, D. R. (2 https://doi.org/10.1093/nar/g 	,	eractive exploration of chemical space. Nucleic acids research,	44(W1), W442-W448.		
Sugerencias didácticas:		Mecanismos de evaluación del aprendizaje de los alumnos:			
Exposición oral	(X)	Exámenes parciales	(X)		
Exposición audiovisual	ĺΧĺ	Examen final escrito	(X)		
Ejercicios dentro de clase	(X)	Trabajos y tareas fuera del aula	(X)		
Ejercicios fuera del aula	(X)	Exposición de seminarios por los alumnos	(X)		
Seminarios	()	Participación en clase	()		
Lecturas obligatorias	(X)	Asistencia	()		
Trabajo de investigación	(X)	Seminario	()		
Prácticas de taller o laboratorio	(X)	Otras:	()		
Prácticas de campo	()				
Otras:	()				